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Abstract  10 

Access to daily high-resolution gridded surface weather data based on direct observations 11 
and over long time periods is essential for many studies and applications including 12 
vegetation, wildlife, soil health, hydrological modelling, and as driver data in Earth system 13 
models. We present Daymet V4, a 40-year daily meteorological dataset on a 1 km grid for 14 
North America, Hawaii, and Puerto Rico, providing temperature, precipitation, shortwave 15 
radiation, vapor pressure, snow water equivalent, and day length. The dataset includes an 16 
objective quantification of uncertainty based on strict cross-validation analysis for 17 
temperature and precipitation results. The dataset represents several improvements from a 18 
previous version, and this data descriptor provides complete documentation for updated 19 
methods. Improvements include: reductions in the timing bias of input reporting weather 20 
station measurements; improvement to the three-dimensional regression model techniques 21 
in the core algorithm; and a novel approach to handling high elevation temperature 22 
measurement biases. We show cross-validation analyses with the underlying weather station 23 
data to demonstrate the technical validity of new dataset generation methods, and to 24 
quantify improved accuracy. 25 
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Background & Summary 36 

Gridded weather products are important historical references to support ecological, 37 
agricultural, water resources management, and climate change studies, particularly in 38 
regions with sparse weather stations and/or intermittent historical meteorological 39 
observations. The gridded products provide a spatially and temporally consistent approach 40 
to assimilate available weather station data, taking into account the changes in temperature, 41 
precipitation, downwelling radiation, and humidity caused by factors such as elevation, 42 
prevailing winds, storm tracks, and proximity to large water bodies. Daymet 43 
(https://daymet.ornl.gov) is one such gridded weather product, which provides daily 44 
minimum and maximum temperature (Tmin and Tmax), precipitation (Prcp), vapor pressure 45 
(VP), shortwave radiation (Srad), snow water equivalent (SWE), and day length on a 1 km x 1 46 
km gridded surface for North America and Hawaii from 1980–2019, and for Puerto Rico for 47 
1950-2019. Maintained by the Oak Ridge National Laboratory (ORNL) Distributed Active 48 
Archive Center (DAAC), Daymet is presently updated annually, as the previous year’s 49 
weather station data becomes available and reaches a status of archive quality. 50 

Daymet was first developed as a research project to provide daily weather driver data for 51 
terrestrial biogeochemical modelling applications. The intermountain West in the 52 
Conterminous US (CONUS) was used as the study area to develop and test the gridded data 53 
product 1. A CONUS data product (Daymet V1) was developed from that early model and 54 
subsequent algorithm improvements 2,3. The multi-agency North American Carbon Program 55 
(NACP) later supported an update of Daymet V2 4 which included more years and a larger 56 
spatial extent. Due to data and algorithm limitations at the time, Daymet V2 was only 57 
available for CONUS, Hawaii, Puerto Rico, Mexico, and southern Canada up to 52 degrees 58 
North. With the inclusion of additional weather stations and further algorithm enhancement, 59 
the spatial coverage of Daymet V3 5 was expanded to include all of North America. 60 

The new Daymet V4 dataset 6 presented here provides effective solutions to known issues 61 
while taking advantage of the latest station observation datasets. Biases in station 62 
observations are identified and corrected, including inconsistencies among stations in time 63 
of observation for both temperature and precipitation, and errors related to temperature 64 
sensor bias. Independent validation with radar-based precipitation estimates are used to 65 
examine the timing of Daymet V4 precipitation. Cross validation analysis is used to quantify 66 
and correct biases related to temperature sensors at high elevation stations. Algorithm 67 
improvements address issues of out-of-range regression estimates in both temperature and 68 
precipitation, and provide increased accuracy and precision in the gridded data products.  69 

Methods 70 

I. Overview 71 

The workflow which results in final Daymet V4 data records consists of five main steps: 72 

1. collection and filtering of input weather station observations and gridded terrain 73 
data, 74 

2. generation of primary output variables, 75 
3. generation of secondary output variables, 76 
4. generation of cross-validation statistics, and 77 
5. data file standardization for archiving and data service. 78 

Each of these workflow steps is described in its own section below. While many steps and 79 
sub-steps include automated or code-based workflows, there are also significant human 80 
interventions between steps, designed for quality assurance / quality control (QA/QC). 81 

https://daymet.ornl.gov/
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II. Daymet input data 82 

A. Daily weather stations – source and general methods 83 

The primary Daymet inputs are daily observations of near-surface maximum and minimum 84 
air temperature and daily total precipitation from weather stations. Before Daymet V3, it 85 
was necessary to retrieve and combine observations from multiple primary data sources. 86 
Since Daymet V4, all weather station inputs can now be acquired from the National Centers 87 
for Environment Information Global Historical Climate Network Daily database (GHCND; 7). 88 
This simplified workflow was possible due to the large expansion of GHCND to cover multiple 89 
networks in the US, Canada, and Mexico with consistent QA/QC across all input weather 90 
stations 8. We used GHCND V3.26, released in April 2019 in Daymet V4. 91 

A preliminary screening of GHCND is performed to identify all available stations in the North 92 
American domain. The screening was conducted at each station for each of the primary input 93 
variables (Tmax, Tmin, and Prcp) in each year. A station-year is removed if more than 180 94 
days of data are missing within a calendar year for a given variable. A station-year removed 95 
for one variable might still be included for other variables if the missing days threshold is not 96 
exceeded for those variables. Data with reported GHCND quality flags were also considered 97 
as missing. For a few stations with identical locations but different station identifiers, 98 
duplicates were removed. The total number of stations remaining after this screening is 99 
higher for Prcp than for Tmax and Tmin over the period 1980–2019 (Figure 1a), with 100 
increases in the Prcp station count after year 2000 due to the growth of the Community 101 
Collaborative Rain, Hail and Snow (CoCoRaHs) network, and decreasing number of 102 
temperature stations in the recent decade due to a sharp drop in stations from networks in 103 
Mexico as well as a decline in the number of stations in the US Cooperative Observer 104 
Program (COOP) network. In terms of the frequency distribution of number of missing days 105 
per station (Figure 1b), most of the station-years have low numbers of missing days, with 106 
secondary peaks at intervals associated with a pattern of whole months being marked as 107 
missing within a station-year (Figure 1b). The fraction of station-year records with no missing 108 
data is higher for Prcp (about 40%) than for Tmax or Tmin (about 30%), while 90% of station-109 
years have fewer than 80 or few than 62 missing days for Prcp and Tmax/Tmin, respectively 110 
(Figure 1c). 111 

 112 

Figure 1. (a) Number of stations included in Daymet V4 by year, (b) frequency distribution of number of missing 113 
days per station-year, and (c) cumulative frequency of station-years with increasing numbers of missing days.  114 
Frequency distributions are shown as aggregated for all years. In all plots the solid line is for Tmax and the dashed 115 
line is for Prcp. The Tmax and Tmin data are nearly indistinguishable in these plots, so for clarity only Tmax is 116 
plotted. 117 

The density of stations varies greatly over the geographic domain, and changes in station 118 
networks over time cause shifting patterns of station density (Figure 2). A primary challenge 119 
for the Daymet algorithm is to accommodate spatial and temporal shifts in station density 120 
while maintaining as much estimation accuracy as possible across the spatial and temporal 121 
domain. Given the geographic separation among North America, Hawaii and Puerto Rico, 122 
these three sub-domains were processed independently, using identical methods for each 123 
region. 124 



 

4 

 

 125 

 126 

Figure 2. Spatial distribution of annual station data for years 1988 and 2015 based on GHCND defined station-127 
level Network Code. Further source information is available within the daily data files where embedded flags 128 
provide information at the individual station level. The SFLAG1, the source flag, provides up to 30 different values. 129 
Most Canadian stations, labeled here as ‘Unspecified’ have an SFLAG1 identifying the source as Environment 130 
Canada. 131 

B. Time-of-observation bias corrections 132 

The issue of time-of-observation (TOO) arises from inconsistent report timing among 133 
stations. For some stations, automated sub-daily readings are aggregated to a midnight-to-134 
midnight time frame. Most stations, such as those in the COOP and CoCoRaHS networks, 135 
report at some time other than midnight. Combining stations with different reporting times 136 
to make estimates at an unmeasured location can lead to estimation biases. These biases are 137 
likely to affect the estimation of Tmax since an observation time before noon will usually 138 
assign Tmax from the previous 24 hours to the current calendar day. Daily minimum 139 
temperature is less likely to be shifted by an observation time before noon since most daily 140 
minimum temperature values occur between midnight and sunrise. Daily total precipitation 141 
presents a more difficult challenge since any observation period other than midnight-to-142 
midnight will result in misplacement of some amount of precipitation between days. While 143 
this timing bias does not affect the overall distribution and long-term climatology and was 144 
not explored in earlier versions of Daymet, it may create issues for more time-sensitive 145 
applications such as flood and heat wave analysis. Therefore, in Daymet V4 we assessed TOO 146 
for each station, as recorded in GHCND or inferred from other network metadata records. 147 
Corrections to the station-level inputs for TOO biases are performed for Tmax and Prcp 148 

Maximum daily temperature (Tmax) 149 

For Tmax, we posited that a bias exists in the actual day of maximum temperature for 150 
readings that have a TOO before local noon 9. Previous studies 10,11 have demonstrated that a 151 
bias exists due to the discrepancy in the observation time and actual occurrence of the daily 152 
maximum temperature. It is conceivable that for most days, a maximum temperature 153 
recorded in the morning is likely the maximum temperature from the previous day. To 154 
correct this bias, for GHCND stations (such as most COOP) that have a TOO prior to noon 155 
local standard time (LST), we shifted the daily Tmax values to the previous day. Although 156 
TOO is not available for Canadian GHCND stations, 12 described that the majority of manual 157 
Canadian climate stations dataset (called the ordinary climate stations) typically have a 158 
morning reporting time at 0700 LST and the recorded values have been assigned to the 159 
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previous calendar day 10 before the data are incorporated in GHCND. We therefore did not 160 
apply additional TOO bias corrections to the Canadian stations. In addition, all other stations 161 
without reported TOO, including stations from Mexican networks, were not adjusted. 162 

To determine if the time adjustment improved Tmax estimates, we compared the cross-163 
validation estimates of the adjusted maximum temperature values to estimates generated 164 
from the same V4 algorithm, but with the input observed maximum temperature value day 165 
unaltered. We found that shifting the maximum temperature data in this way resulted in 166 
substantial reductions in cross-validation error for the daily estimates, and therefore 167 
adopted the approach for Daymet V4 processing. See the Technical Validation section for 168 
detailed results of this analysis. 169 

Daily total precipitation (Prcp) 170 

Similar to Tmax, observations of precipitation that are taken once per day but that are not 171 
reporting from midnight-to-midnight LST can result in all or part of a precipitation event 172 
being attributed to the wrong calendar day. However, unlike Tmax, there is no obvious way 173 
to correct the timing issue of Prcp. Our objective was to improve the overall timing of daily 174 
precipitation amounts without compromising the frequency of daily precipitation 175 
occurrence. We explored two alternative TOO corrections for Prcp, assessing error and bias 176 
in estimated precipitation amount and errors in the estimated frequency of wet and dry days 177 
for the two approaches. The first method was to move a fraction of the observed daily total 178 
precipitation to the previous calendar day, based on TOO at each station. The second 179 
method was to shift the entire daily precipitation amount to the previous calendar day based 180 
on TOO (same with Tmax). For the first method, the fraction shifted to the previous day was 181 
given by the fraction of the 24-hour day elapsed between TOO and the subsequent midnight. 182 
The precipitation value of the next calendar day would receive the same treatment in which 183 
any fractional amount from this calendar day would be added to the shifted value. For the 184 
second method, the total recorded precipitation amount was shifted back one day for 185 
weather stations with TOO earlier than noon LST. We obtained TOO information from the 186 
metadata of GHCND, which is available for a majority of stations in the US COOP, Weather-187 
Bureau-Army-Navy (WBAN), Remote Automatic Weather Stations (RAWS), and Snow 188 
Telemetry (SNOTEL) networks. Although TOO is not carried into GHCND distribution for 189 
CoCoRaHS stations, the CoCoRaHS training material 13 indicates that most CoCoRaHS stations 190 
have a morning TOO, with 84% of stations recording at 0700 LST. We hence included all 191 
CoCoRaHS stations in the TOO adjustment. Given the same reason with Tmax, we did not 192 
apply correction to Canadian and Mexican stations, as well as those US stations without TOO 193 
information. 194 

We found that the first method (splitting precipitation totals across days) gave the lowest 195 
daily errors for precipitation amount but resulted in a large increase in over-prediction of 196 
wet-day frequency. The second method (moving entire daily amounts across days) gave an 197 
improved daily error for recent years compared to the uncorrected data, and maintained the 198 
very low bias in wet-day frequency estimation characteristic of the Daymet methods applied 199 
to station data without TOO biases. We therefore selected the second method for Prcp TOO 200 
bias correction. Detailed results supporting this choice are provided in the Technical 201 
Validation section. 202 

C. High-elevation temperature sensor bias correction 203 

Since Daymet V1, gridded estimates of temperature and precipitation in mountainous 204 
regions have been aided by the inclusion of the SNOTEL network of high elevation 205 
autonomous stations 14. A data quality issue associated with replacement of temperature 206 
sensors beginning in the mid-1990s has been reported 15-17. The difference between old and 207 
new sensors has been shown to be a related to the observation temperature, with the new 208 
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sensors recording higher temperature than the old sensors under colder conditions, and the 209 
new sensors recording lower temperature than the old sensors under warmer conditions16. 210 
Oyler et al.17 used pair-wise comparisons to perform homogenization of temperature records 211 
before and after sensor updates, based on methods by Menne and Williams18. 212 

We used the existing Daymet cross-validation framework (described in the Daymet 213 
Algorithms section, below) to assess patterns of estimation bias in the SNOTEL network 214 
before and after the installation of new sensors, using the date of sensor updates for each 215 
station from 17. We found that the pattern of bias was in qualitative agreement with the 216 
expected bias patterns previously described. We derived a quantitative relationship between 217 
observed temperature and sensor bias using data aggregated across the entire SNOTEL 218 
network, and applied that relationship to the observations from older sensors to reduce bias 219 
and improve temporal and spatial network homogeneity. The bias correction takes the form 220 
of a piece-wise linear function of original temperature measurement (Toriginal), and is applied 221 
uniformly to Tmax and Tmin observations for the period prior to sensor update for each 222 
SNOTEL station, as follows: 223 

 224 

𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

{
 
 

 
 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 0.4143, 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 < −20℃

1.0245 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 0.9043, −20℃ ≤ 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 < −5.3℃

0.9523 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 0.5217, −5.3℃ ≤ 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 < 30℃

𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 0.9093, 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ≥ 30℃

 (1) 225 

 226 

Detailed results leading to this correction are provided in the Technical Validation section. 227 

D. Additional gridded surface data inputs and geographic projection 228 

Additional Daymet inputs are a gridded digital elevation model (DEM) and a corresponding 229 
land/water mask defining the Daymet domain. The DEM used in Daymet is processed from 230 
the National Aeronautics and Space Administration (NASA) Shuttle Radar Topography 231 
Mission (SRTM) near-global 30 arc second DEM V2.1. The SRTM DEM was first projected 232 
from a geographic coordinate system (GCS_WGS_84) to a Lambert Conformal Conic 233 
projection 6 for Daymet projection parameters) and resampled to each 1 km x 1 km Daymet 234 
grid. The resampling method used a cubic convolution interpolation with a 1,000 m output 235 
cell size. Slope and aspect grids are derived from the DEM within the Daymet algorithm. 236 
Horizon files used for radiation estimation were generated separately with the r.horizon 237 
model using the GRASS GIS software 19. 238 

The land/water mask was derived from the MODIS 250 m Land-Water Mask MOD44W_v2 20. 239 
Similar to the DEM, the 250 m MODIS land/water mask was reprojected and resampled to 240 
the 1 km x 1 km Daymet grid. Inland water bodies are considered as land in the Daymet 241 
domain, retaining only the coastline as the Daymet land/water interface. 242 

III. Daymet algorithms 243 

A. Spatial and temporal interpolation 244 

The main algorithm to estimate primary Daymet variables (Tmax, Tmin, and Prcp) at each 245 
Daymet grid is based on a combination of interpolation and extrapolation, using inputs from 246 
multiple weather stations and weights that reflect the spatial and temporal relationships 247 
between a Daymet gridcell (measured from its center) and the surrounding weather stations. 248 
The approximate number of weather stations used at each Daymet gridcell is defined as a 249 
parameter for each Daymet variable. In Daymet V1 this parameter (average number of 250 
stations, or ANS) was used as an input to an iterative station density estimation algorithm, 251 
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which produced a search radius that was specific to each gridcell 1. After a series of algorithm 252 
modifications intended to improve robustness in regions of very low weather station density, 253 
the Daymet V4 algorithm replaces the iterative station density calculation with a pre-254 
calculated search radius (rsearch) at each gridcell which is sized to capture ANS based on arrays 255 
of station distance. In regions with relatively high station density, such as most of the 256 
CONUS, the search radius approach is nearly identical to the iterative station density 257 
approach. In regions with very sparse observation networks, for example in the Arctic 258 
regions of Alaska and Canada, the modified approach eliminates artifacts associated with 259 
iterations in the previous density calculation, improving the stability of Daymet estimates 260 
and reducing mean cross-validation error. 261 

At each Daymet gridcell, a truncated Gaussian convolution kernel is used to assign weights 262 
for all surrounding stations identified by rsearch. These weights are held constant until the 263 
station list changes, which can happen at the beginning of each year due to weather station 264 
data availability. The shape of the Gaussian kernel is defined by a single parameter (the 265 
Gaussian shape parameter, or GSP). The normalized weight for a given station (with index i) 266 
in the input weather station list (wi) is given as: 267 

 268 

𝑤𝑖 =
𝑒𝑥𝑝(−𝐺𝑆𝑃 (

𝑑𝑖
𝑟𝑠𝑒𝑎𝑟𝑐ℎ

)
2

)−𝑒𝑥𝑝(−𝐺𝑆𝑃)

∑ 𝑤𝑖
𝐴𝑁𝑆
𝑖=1

      (2) 269 

 270 

where di is the horizontal distance from a Daymet gridcell to the station. Normalization here 271 
ensures that the weights for all stations in the station list for a Daymet gridcell sum to 1. 272 

Because the number and distribution of observations can differ significantly for different 273 
meteorological variables, and because the optimal interpolation parameters (ANS and GSP) 274 
can differ among variables 1, we specify a unique pair of ANS and GSP parameters for each of 275 
the primary variables (Tmax, Tmin, and Prcp). Station lists and associated weights are 276 
calculated at each Daymet gridcell in each year, and for each primary variable. These lists 277 
and weights are accessed as inputs to the subsequent workflow steps. 278 

Because the horizontal location information recorded for some stations is not precise 279 
enough to assign unique locations within the 1 km grid, we allow for automatic adjustment 280 
of station location within +/- 1 km to minimize difference between recorded station 281 
elevation and gridded terrain data, as detailed in Thornton et al. 1. 282 

B. Generation of primary output variables 283 

Given the pre-processed weather station inputs and pre-calculated station lists and weights 284 
at each Daymet gridcell, two separate workflows are used to produce the primary Daymet 285 
output variables: one for Tmax and Tmin and another for Prcp. 286 

Daily temperature estimation 287 

Since the workflows for Tmax and Tmin are identical, here we describe them using a generic 288 
daily temperature variable T. First, the horizontal coordinates (meters from the origin) at the 289 
center of each Daymet gridcell are calculated from the Daymet projected coordinate system 290 
6. The vertical coordinate, or elevation, (meters above mean sea level) of a target gridcell is 291 
obtained from the pre-processed DEM. Horizontal coordinates and elevation of stations are 292 
derived from station metadata records for all selected weather stations. Based on the 293 
identified weather station list at each Daymet gridcell, the distance (km) and elevation 294 
difference (m) between Daymet gridcells and weather stations are calculated. 295 
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The estimation of temperature is based on a weighted multivariate regression model which 296 
uses the available observations to estimate spatial gradients in the observed temperature in 297 
three orthogonal spatial dimensions: two horizontal, and one vertical. This is a modification 298 
from the univariate regression adopted in Daymet V1 1, which included estimates only for 299 
the vertical gradient in observations (in this case the temperature lapse rate). By including 300 
both horizontal and vertical gradients in a multivariate regression framework, we may obtain 301 
additional information about horizontal gradients due to short-term events such as the 302 
passage of frontal systems, and due to persistent geographic features, such as nearby water 303 
bodies, urban areas, and interaction with large-scale terrain features and prevailing wind 304 
directions. Accounting for horizontal gradients removes some aliasing of these effects onto 305 
the vertical gradient estimates and improves predictions in regions of both flat and complex 306 
terrain. 307 

Because the realization of horizontal and vertical temperature gradients can vary over time, 308 
we estimate the gradients separately for each day. To maximize the use of information about 309 
spatial gradients provided by the station observations, we use a paired-difference approach 310 
as described by 1 to form the inputs for regressions at each Daymet gridcell. We use a 311 
weighted regression model that considers the interpolation weights for each station in the 312 
paired difference. Because the paired-difference approach is designed to have a near-zero 313 
intercept for the resulting regression equations, we do not include the intercept term in the 314 
formulation. Detailed implementation at a single Daymet gridcell is given by the following 315 
series of equations. 316 

Paired differences in the station horizontal and vertical positions are given as: 317 

 318 

{

𝑑𝑥𝑝 =  𝑠𝑝(𝑥𝑖 − 𝑥𝑗)

𝑑𝑦𝑝 = 𝑠𝑝(𝑦𝑖 − 𝑦𝑗)

𝑑𝑧𝑝 = 𝑠𝑝(𝑧𝑖 − 𝑧𝑗)

        (3) 319 

 320 

where p is an index from 1 to np, with np as the number of unique station pairings possible 321 
given the station list at each Daymet gridcell, and np = (ANS2-ANS)/2. The variables dx, dy, 322 
and dz are the differences in horizontal distances (x and y) and vertical distance (z) between 323 
the pair of stations, and the subscripts i and j denote the index values of each station in the 324 
unique pairing from the full station list at each Daymet gridcell. To avoid bias in the mean 325 
values of dx, dy, and dz which can occur if the stations in the list have non-random order 326 
with respect to their x, y, and z coordinates, the variable sp is introduced, with a value of 327 
either 1 or -1 for a given unique pairing p, and that value alternating between the two values 328 
for each value of p from 1 to np. As a further guard against biased mean differences, the 329 
initial value of sp for n = 1 is switched between 1 and -1. The arrays dx, dy, and dz form the 330 
matrix of independent variables in the multivariate regression model. Since the station list is 331 
fixed for all days in a given year, these independent variables are calculated once per year. 332 

At each Daymet gridcell, the regression weight associated with each unique pairing, rwp, is 333 
calculated as: 334 

 335 

𝑟𝑤𝑝 = 𝑤𝑖𝑤𝑗          (4) 336 

 337 

where wi and wj are the interpolation weights at the estimation point for the two stations 338 
making up the unique pairing, from Eq (2). 339 
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Given these regression components, which are the same for each day in a given year at a 340 
given Daymet gridcell, temperature difference is calculated for each day as: 341 

 342 

𝑑𝑇𝑝,𝑑 =  𝑠𝑝(𝑇𝑖,𝑑 − 𝑇𝑗,𝑑)        (5) 343 

 344 

where Ti,d and Tj,d are the daily temperature measurements (either Tmax or Tmin) for two 345 
stations (i and j) in a unique pairing, for a given day, d.  346 

Based on the inputs defined in Eqs (2-5), the vector of least squares regression parameters is 347 
given in the standard matrix representation for multivariate regression 21: 348 

 349 

𝛽̂ = (𝑿′𝑾𝑿)−1𝑿′𝑾𝒚        (6) 350 

 351 

where the four elements of column vector 𝛽̂ represent the regression intercept (𝛽0) and the 352 
regression coefficients for two orthogonal horizontal temperature gradients (𝛽1and 𝛽2 for 353 
gradients in the x and y directions, respectively) and one vertical (z direction) temperature 354 
gradient (𝛽3). 𝑿 in Eq (6) is the (np x 4) matrix of independent variables, given as: 355 

 356 

𝑿 = [
1
⋮
1

 
 
 

𝑑𝑥1
⋮

𝑑𝑥𝑛𝑝

 
 
 

𝑑𝑦1
⋮

𝑑𝑦𝑛𝑝

 
 
 

𝑑𝑧1
⋮

𝑑𝑧𝑛𝑝

]       (7) 357 

 358 

𝒚 is the column vector (np x 1) of dependent variables for a given day d, given as: 359 

 360 

𝒚 = [

𝑑𝑇1,𝑑
⋮

𝑑𝑇𝑛𝑝,𝑑

]         (8) 361 

 362 

𝑾 is the (np x np) diagonal weighting matrix constructed from the weights in Eq (4), as: 363 

 364 

𝑾 = [

𝑟𝑤1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑟𝑤𝑛𝑝

]        (9) 365 

 366 

𝑿′ is the transpose of 𝑿, and ()-1 indicates the inverse matrix. 367 

Finally, the temperature at the Daymet gridcell location and for the given day d, Test,d, is given 368 
as: 369 

 370 

𝑇𝑒𝑠𝑡,𝑑 = ∑ 𝑤𝑖 (𝑇𝑖,𝑑 + 𝛽1(𝑥𝑒𝑠𝑡 − 𝑥𝑖) + 𝛽2(𝑦𝑒𝑠𝑡 − 𝑦𝑖) + 𝛽3(𝑧𝑒𝑠𝑡 − 𝑧𝑖))
𝐴𝑁𝑆
𝑖=1  (10) 371 

 372 
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where xest and yest are the Daymet gridcell coordinates and zest is the Daymet gridcell 373 
elevation. All geographic units are expressed in meters from map origin or meters above 374 
mean sea level, and temperatures are expressed in degrees Celsius. 375 

Two constraints are placed on the estimations generated by Eq (10). First, 𝛽3 (the vertical 376 
temperature gradient) is restricted to the range (-0.012 to 0.001) °C/m. This means that 377 
normal temperature lapse rates are limited to at most a 12°C decrease and 1°C increase in 378 
temperature per 1000 m elevation difference. This constraint reduces spurious estimations 379 
in regions of strong topographic relief and very sparse station networks, especially in the far 380 
northern extent of the Canadian Rocky Mountains. The second constraint caps any daily 381 
temperature estimate from Eq (10) to no more than 10°C warmer than the warmest 382 
observed temperature in the station list for the given day. This constraint prevents spurious 383 
horizontal temperature gradients from causing excessively warm temperatures in regions 384 
with very sparse and horizontally skewed station distributions, for example on the southern 385 
extremity of the Baja peninsula. 386 

Daily precipitation estimation 387 

For Prcp, we also started by calculating the coordinates and distance of all selected weather 388 
stations. Since the interpolation parameters ANS and GSP are different for temperature and 389 
precipitation, the list of selected stations by Eq. (2) can be different. All daily precipitation 390 
observations and gridded estimates are described here in water equivalent units of mm/day. 391 

The precipitation estimation for a given location on a given day is performed in two steps. 392 
First, an estimation is made for daily precipitation occurrence (wet vs. dry). Next, for wet 393 
days an estimation is made for daily precipitation total. Estimated precipitation occurrence 394 
for a given day d (POest,d) is calculated as a binomial variable following Thornton et al. 1: 395 

 396 

𝑃𝑂𝑃𝑒𝑠𝑡,𝑑 = ∑ 𝑤𝑖𝑃𝑂𝑖,𝑑
𝐴𝑁𝑆
𝑖=1        (11) 397 

𝑃𝑂𝑖,𝑑 = {
0;     𝑃𝑖,𝑑 = 0

1;     𝑃𝑖,𝑑 > 0
        (12) 398 

𝑃𝑂𝑒𝑠𝑡,𝑑 = {
0;     𝑃𝑂𝑃𝑒𝑠𝑡,𝑑 < 𝑃𝑂𝑃𝑐𝑟𝑖𝑡
1;     𝑃𝑂𝑃𝑒𝑠𝑡,𝑑 ≥ 𝑃𝑂𝑃𝑐𝑟𝑖𝑡

      (13) 399 

 400 

where POPest,d is the estimated probability (range 0 to 1) of precipitation occurrence at a 401 
given estimation location on a given day, wi is the station interpolation weight given by Eq 402 
(2), POi,d is the observed precipitation occurrence for a given station i in the station list on 403 
day d, Pi,d is the observed precipitation amount for that same station and day, and POPcrit is a 404 
threshold parameter for occurrence estimation. 405 

Contingent on POest,d = 1, the weighted multivariate regression framework of Eq (6) is used to 406 
estimate horizontal and vertical gradients in precipitation. For the purpose of estimating 407 
spatial precipitation gradients, a temporal smoothing filter is applied to the daily 408 
precipitation observations at each station. The filter has a width of 5 days and is centered on 409 
the day of estimation with relative filter weights from days d-2 to d+2 as [1, 2, 3, 2, 1]. Only 410 
wet days (and weights associated with those days) within the filter time window are included 411 
in the smoothed value at day d. For example, the smoothed value for a filter window with 412 
daily precipitation values given by [0, 0.1, 0.2, 2.3, 0.5] would be (2*0.1 + 3*0.2 + 2*2.3 + 413 
1*0.5) / (2 + 3 + 2 + 1) = 0.7375. The filter window width is truncated when the day of 414 
estimation is within the first or last two days of the year. Note that the smoothed 415 
precipitation values are used to estimate gradients, but final daily precipitation predictions 416 
are based on the un-smoothed station observations. 417 
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Compared to the regression matrices for temperature gradients, there are two differences 418 
for precipitation gradients. First, the regression weight for a unique pairing of stations is set 419 
to zero if either or both of the smoothed precipitation inputs for that day are zero: 420 

 421 

𝑟𝑤𝑝 = {
𝑤𝑖𝑤𝑗;  𝑃𝑆𝑖,𝑑 𝑎𝑛𝑑 𝑃𝑆𝑗,𝑑 > 0 

0;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (14) 422 

 423 

where PSi,d and PSj,d are the smoothed precipitation values at stations i and j on day d. 424 
Second, the column vector 𝒚 is made up of differences in these unique pairs of filtered 425 
precipitation observations as follows: 426 

 427 

𝒚 = [

𝑑𝑃𝑆1,𝑑
⋮

𝑑𝑃𝑆𝑛𝑝,𝑑

]         (15) 428 

𝑑𝑃𝑆𝑖,𝑑 = {
𝑠𝑝(𝑃𝑆𝑖,𝑑 − 𝑃𝑆𝑗,𝑑); 𝑃𝑆𝑖,𝑑 𝑎𝑛𝑑 𝑃𝑆𝑗,𝑑 > 0

0;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (16) 429 

 430 

where sp is the sign switching mechanism as described for Eq (3).  431 

Still contingent on POest,d = 1, the daily total precipitation Pest,d at a Daymet gridcell and day d 432 
is estimated using the weighted sum of wet stations as: 433 

 434 

𝑃𝑒𝑠𝑡,𝑑 = ∑ {

𝑤𝑖(𝑃𝑖,𝑑+𝛽1(𝑥𝑒𝑠𝑡−𝑥𝑖)+𝛽2(𝑦𝑒𝑠𝑡−𝑦𝑖)+𝛽3(𝑧𝑒𝑠𝑡−𝑧𝑖))

𝑤𝑠𝑢𝑚,𝑑
;  𝑃𝑖,𝑑>0

0; 𝑃𝑖,𝑑 = 0

𝐴𝑁𝑆
𝑖=1    (17) 435 

 436 

where wsum,d is the sum of all wi for wet stations on day d.   437 

The daily precipitation estimates from Eq (17) are subject to several constraints. First, the 438 
gradients estimated from weighted regression can sometimes result in Pest,d < 0, and those 439 
cases are truncated to 0. Second, if Pest,d is more than twice the highest measured 440 
precipitation value from the station list for day d, those values are truncated at two times of 441 
the max measured precipitation value. Third, constraints are placed on the spatial gradients 442 
as estimated from Eq (17), with 𝛽1and 𝛽2 (the horizontal components of spatial precipitation 443 
gradient) constrained to the range (-0.001, 0.001) mm/day/m and 𝛽3 constrained to the 444 
range (0, 0.02) mm/day/m. These constraints were determined empirically by examining 445 
histograms of calculated gradients and their joint distributions with anomalous precipitation 446 
outputs from Eq (17). Fourth and finally, if precipitation occurrence (via Eq. 12) is recorded 447 
for three or fewer stations in the list for a given gridcell on a given day (suggesting a more 448 
localized storm), then all values of 𝛽1, 𝛽2, and 𝛽3 are forced to zero. This final constraint 449 
prevents some spurious extrapolations near the edges of localized daily precipitation events. 450 
We also note that a constraint limiting precipitation to a maximum of 200 mm/day that was 451 
in effect for Daymet V3 has been removed for Daymet V4. 452 

C. Generation of secondary output variables 453 

In addition to Tmax, Tmin, and Prcp, Daymet also includes estimates of other important 454 
meteorological variables that are not routinely observed, or are only available at a small 455 



 

12 

 

fraction of weather stations. These secondary variables include daily total shortwave 456 
radiation (Srad), daily average water vapor pressure (VP), duration of the daylight period 457 
(daylength), and a simple estimate of accumulated snowpack, measured as snowpack water 458 
equivalent (SWE). The daylength estimate is based on geographic location and time of year. 459 
Estimates of other secondary variables (Srad, VP, and SWE) are derived from the primary 460 
variables (Tmax, Tmin, and Prcp) based on atmospheric theory and empirical relationships, 461 
as described below. 462 

The detailed equations for joint estimation of Srad and VP based on Tmax, Tmin, and Prcp 463 
inputs are described in Thornton and Running 2,22 with modifications as given in Thornton et 464 
al. 3. Here we provide a summary of the theory and workflow. Based on the observed 465 
positive relationship between diurnal temperature range and daily total atmospheric 466 
transmittance originally described by 23 and further developed by 24 and 22, daily Daymet 467 
Tmax and Tmin are used to estimate daily total transmittance of shortwave radiation at each 468 
Daymet gridcell and each day. The parameterization of this empirical relationship is sensitive 469 
to regional and seasonal variation in mean diurnal temperature range, to variation in 470 
atmospheric attenuation due to decreased overlying air mass with increasing terrain height, 471 
diurnal variation in optical thickness due to solar angle, reduction in transmittance with 472 
increased humidity, and observed variation in empirical relationships on days with and 473 
without precipitation. 474 

In addition to these factors influencing atmospheric transmittance, the fraction of clear-sky 475 
transmittance realized on any day is also used to estimate the fraction of incoming radiation 476 
received as direct vs. diffuse radiation. The direct beam component is used in conjunction 477 
with terrain slope, aspect, and local horizon angles to estimate beam-slope geometry for 478 
land surface in flat or complex terrain, including the variation of this geometry over the 479 
course of each day on ten-minute time steps. Digital terrain data are also used to estimate 480 
the fraction of unobstructed sky visible at each estimation location, to estimate attenuation 481 
of incoming diffuse radiation. The influence of snow cover is also considered, as snow-482 
covered land surface interacts with cloud cover to enhance incident radiation through 483 
multiple reflection and absorption pathways. 484 

Estimation of water vapor pressure (VP) is based on the observed correspondence between 485 
night-time minimum temperature and dewpoint temperature for many climate regimes 24 22 486 
with improvements to that relationship for arid and semi-arid climates as described by 25. 487 
Because aridity correction requires an estimate of potential evapotranspiration (PET) and 488 
PET requires an estimate of incoming shortwave radiation, we use an iterative approach to 489 
jointly estimate radiation and humidity, as described in Thornton et al. 3. 490 

The iterative approach begins by assuming the dewpoint temperature is equal to daily 491 
minimum temperature, and that the dewpoint temperature (and therefore absolute 492 
humidity) remains constant through the day. The vapor pressure implied by this assumption 493 
is used to adjust an initial estimate of daily total transmittance, providing an initial estimate 494 
of daily total shortwave radiation. PET is calculated from this initial estimate of Srad, and 495 
used to estimate aridity corrections for VP, if needed. The adjusted humidity is used to 496 
provide a final revised correction to transmittance, if needed, followed by a final revised 497 
estimate of Srad. 498 

Estimated snow water equivalent (SWE) is based on a very simple temperature driven model 499 
of snow accumulation and snowmelt, as described in Thornton et al. 3. The sole purpose of 500 
the SWE calculation is to provide an approximate control on Srad through the multiple 501 
reflection mechanism. We make SWE data available as part of Daymet V4 so that users can 502 
accurately diagnose the influence of this snow correction on Srad estimates. We encourage 503 
researchers who require a more accurate estimate of snowpack dynamics to use the 504 
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temperature, precipitation, and potentially radiation and humidity variables from Daymet v4 505 
to drive a more capable and sophisticated snow process model. 506 

D. Generation of cross-validation error estimates 507 

Since the first public release of Daymet, results from a comprehensive cross-validation 508 
analysis have accompanied each release of the gridded daily surface weather products. The 509 
purpose of the cross-validation analysis is to provide users with details needed to evaluate 510 
the fitness of Daymet for each unique application. 511 

The cross-validation analysis treats each variable-station-year of data from the input station 512 
lists as a unique record. This means that each primary variable (Tmax, Tmin, and Prcp) is 513 
handled separately at each station location and each year. For each such record, estimates of 514 
the primary variable are made by dropping that record from the input station list and using 515 
the exact estimation methods described above to make estimates for the primary variable 516 
on each day of the year. Since each station in the input list can have missing days where the 517 
primary variable is not recorded, only days with non-missing data for the cross-validation 518 
station record are used to calculate error statistics for that record. The number of missing 519 
days in each record is used to provide appropriate weights when reporting multi-station 520 
averages or time series summaries for the cross-validation results. 521 

A complete record of the primary variable estimates for each day with non-missing data, for 522 
each station and each year, together with the corresponding daily observed values, are made 523 
available for user download (citation below). These cross-validation records include all of the 524 
relevant meta-data associated with each station, to allow users to assess patterns of error in 525 
relation to station location, observation type, station network, year of observation, seasonal 526 
patterns, or other analyses as deemed appropriate by the users. 527 

Many different summary statistics can be computed from these paired daily observations 528 
and estimates, such as mean absolute error, root mean squared error, or bias. Different time 529 
periods can also be evaluated, according to the user needs. In the Technical Validation 530 
section below, we focus on mean absolute error and bias for daily and annual time periods. 531 
Further details of the Daymet V4 station-level cross-validation results is provided by 532 
Thornton, Wei, et al. 26. 533 

Data Records 534 

The Daymet V4 data 6 are available from the NASA-sponsored ORNL DAAC. The data are 535 
available in CF compliant netCDF file format for the time period 1980–2019 for the separate 536 
spatial extents of Continental North America and Hawaii, and from 1950–2019 for the Puerto 537 
Rico/Virgin Islands spatial extent. Data are geolocated in a projected coordinate system, the 538 
Lambert Conformal Conic projection, with a spatial resolution of 1km x 1km. Data are 539 
updated on an annual schedule. 540 

Daymet cross-validation data are also made available through the ORNL DAAC 26. Each data 541 
file contains the daily observations extracted from GHCND and associated Daymet model 542 
predicted primary variables (Tmax, Tmin, and Prcp), based on the cross-validation methods 543 
described above, for all input stations across the entire period. Also included are the 544 
corresponding station metadata files for each variable and year, including station name, 545 
station identifier, latitude, longitude, and elevation. 546 

The Daymet V4 data are available by direct data download as well as specialized tools and 547 
services that focus on open, interoperability, and programable access of the Daymet data are 548 
shared from the web site https://daymet.ornl.gov/. 549 

https://daymet.ornl.gov/
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Technical Validation 550 

We provide technical validation details supporting all bias corrections applied to input data 551 
from the weather station networks, followed by results from the Daymet V4 cross-validation 552 
analysis. We also provide some examples illustrating the Daymet V4 data products. 553 

I. Time-of-observation bias corrections 554 

A. Assessing maximum temperature time-of-observation bias correction 555 

To evaluate the influence of a TOO bias on estimates of Tmax, we examined data records 556 
from six years: three in the earlier part of the Daymet period (1988, 1989, and 1990) and 557 
three from the later part (2015, 2016, and 2017). As described above, we focused on the US 558 
COOP network for this analysis, since we have TOO metadata records available for most 559 
stations in that network. Among all COOP stations, about 50% of Tmax records in early years 560 
and about 75% of Tmax records in later years have TOO before noon LST (Table 1). Given 561 
that a significant number of stations are exposed to this source of bias, we expected that the 562 
bias correction would have an important and positive impact on the quality of daily Tmax 563 
estimates throughout the Daymet period of record. 564 

 565 

Table 1.  Summary of TOO available from GHCND during the six years of analysis. Only US stations are shown here 566 
to illustrate percentages due to widely missing Canadian and Mexican TOO information. The percent of station-567 
days with missing data is given for each variable and each year (% nodata). 568 

* US COOP Network Only 569 

 570 

We used the Daymet V4 temperature prediction and cross-validation algorithms as described 571 
above to compare cross-validation errors for the six analysis years with and without the TOO 572 
bias correction. We found that with the TOO bias correction, mean absolute error (MAE) for 573 
daily Tmax estimates dropped significantly in all six years. For the early years the average 574 
daily error was 1.81 °C without correction and 1.65 °C with correction and for the later years 575 
the same error was 1.62 °C without correction and 1.23 °C with correction, for about a 9% 576 
reduction in error for the early years and about a 24% reduction for the later years. Because 577 
this TOO bias correction moves observations in the input station dataset by at most one day, 578 
we did not expect a significant impact of this TOO bias correction on cross-validation errors 579 
based on longer averaging periods such as annual mean Tmax derived from daily estimates. 580 
This expectation was correct: MAE for annual mean Tmax was the same with and without 581 
the TOO bias correction, at 0.79 °C for the earlier years and 0.55 °C for the later years. The 582 
bias in Tmax estimates as determined by daily cross-validation analysis is very small, and is 583 
not affected by TOO correction, with Daymet underestimating Tmax on a daily basis by 0.020 584 
°C for the earlier years, and by 0.005 °C for the later years. Cross-validation results for 585 
individual years for this evaluation are shown in Table 2. 586 

Table 2.  The percent change in weighted average daily MAE (dayMAE) and period of record MAE (porMAE) for 587 
maximum daily temperature during the selected six years evaluated with the Daymet V4 algorithm through two 588 
runs; time-adjusted vs not adjusted input values. 589 

 maximum temperature* precipitation 

 
year 

station 
days 

%TOO  
before noon % nodata 

station 
days 

%TOO 
before noon % nodata 

1988 1,729,277 49.53 2.26 2,914,822 56.70 11.90 
1989 1,742,252 50.46 2.61 2,942,135 56.94 12.42 
1990 1,746,314 51.24 2.91 2,937,209 57.26 12.89 
2015 1,693,990 74.90 2.03 6,877,546 83.57 5.50 
2016 1,676,722 74.90 2.23 6,860,087 84.68 7.87 
2017 1,63,5940 74.90 2.40 6,892,927 84.38 7.40 
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 590 

 591 

B. Assessing precipitation time-of-observation bias correction 592 

We performed a similar cross-validation analysis to evaluate the influence of TOO bias on 593 
estimates of Prcp, examining the same six years and comparing error statistics with and 594 
without correction. Among all US GHCND stations, about 56% of Prcp records in early years 595 
and about 84% of Prcp records in later years have TOO before noon LST (Table 1). Given that 596 
a significant number of stations are exposed to this source of bias, we expected that the bias 597 
correction would have an important and positive impact on the quality of daily Prcp 598 
estimates throughout the Daymet period of record. 599 

As described in the Methods section, we tested two correction approaches; one shifted 600 
fractions of daily precipitation totals and another moved the entire daily total to the 601 
previous day. While the fractional shift method produced the lowest daily MAE in cross-602 
validation analysis, it also caused a significant increase in precipitation bias and a small 603 
increase in annual total precipitation MAE (Table 3). Daily MAE for the fractional shift 604 
approach averaged 1.6 mm/day for earlier years, and 1.2 mm/day for later years, compared 605 
to 1.7 mm/day and 1.5 mm/day for the uncorrected data in those two periods, respectively. 606 
This represents about an 8% and 18% reduction in daily MAE for the earlier and later years, 607 
respectively, using the fractional shift approach. Bias for the fractional shift approach 608 
averaged +0.08 mm/day and +0.10 mm/day for the earlier and later years, respectively, 609 
compared to +0.04 mm/day and +0.08 mm/day for those same periods using the 610 
uncorrected data. This represents an increase in bias of about 76% and 24% for the earlier 611 
and later periods, respectively. The whole-day shift correction method daily MAE from cross-612 
validation was 0.18 mm/day and 0.13 mm/day for earlier years and later years, respectively. 613 
This represents an increase in daily MAE of about 3% for the earlier years, and a decrease of 614 
about 9% for later years, compared to the use of uncorrected data. The bias statistics for the 615 
whole-day shift approach were +0.05 mm/day and +0.09 mm/day for the earlier and later 616 
years, respectively. This represents an increase in bias of about 5% and 6% for the two 617 
periods, respectively. As expected, and similar to the results for maximum temperature, 618 
cross-validation MAE for estimates of annual total precipitation derived from daily estimates 619 
was not significantly influenced by TOO bias correction, assessed at about 0.3 mm/day for all 620 
cases (uncorrected and both bias correction methods).  621 

Table 3.  The percent change in weighted average daily MAE (dayMAE), period of record MAE (porMAE), and bias 622 
for precipitation during the selected six years evaluated with the Daymet V4 algorithm through two runs; time-623 
adjusted vs not adjusted input values. The upper section of the table shows results for shifting entire daily 624 
precipitation totals, while the lower section shows results for shifting fractions of daily precipitation.  625 

 Precipitation (Prcp): Total daily value shift  

 
year 

%change 
mean dayMAE 

%change 
mean porMAE 

%change 
bias 

Mean Total 
nstns 

Avg good  
days/stn 

1988 2.8483 0.6154 0.0000 13,235 349.22 
1989 3.2680 0.9585 4.1667 13,048 351.25 
1990 3.9652 0.8721 4.6512 12,918 351.77 
2015 -8.3990 0.0000 4.5455 20,476 329.20 
2016 -7.9365 0.3861 8.0000 20,263 330.39 

 Maximum daily temperature (Tmax) 

 
year 

%change 
mean dayMAE 

%change 
mean porMAE 

Mean Total 
nstns 

Avg good 
days/stn 

1988 -8.9482 -0.5013 10,666 344.13 
1989 -8.8567 -0.3006 10,644 345.03 
1990 -9.4025 -0.1938 10,721 345.61 
2015 -24.0978 -0.2892 9,124 350.70 
2016 -23.6063 -0.2885 8,968 349.75 
2017 -24.6029 0.5235 8,712 350.08 
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2017 -9.2350 -0.3774 5.1282 20,340 329.83 
      

 Precipitation (Prcp): Fractional daily value shift  

 
year 

%change 
mean dayMAE 

%change 
mean porMAE 

%change 
bias 

Mean Total 
nstns 

Avg good  
days/stn 

1988 2.8483 0.6154 0.0000 13,235 349.22 
1989 3.2680 0.9585 4.1667 13,048 351.25 
1990 3.9652 0.8721 4.6512 12,918 351.77 
2015 -8.3990 0.0000 4.5455 20,476 329.20 
2016 -7.9365 0.3861 8.0000 20,263 330.39 
2017 -9.2350 -0.3774 5.1282 20,340 329.83 

 626 
This analysis suggests that the two bias correction methods represent a compromise, with 627 
the fractional shift approach representing a more realistic transfer of precipitation between 628 
days, but requiring some additional information to prevent an increase in number of wet 629 
days and precipitation bias when a single wet day is split across the daily measurement 630 
boundary. By not splitting daily events, the frequency of wet and dry days is retained from 631 
the original data (results not shown) and the growth in bias is mitigated, but the 632 
improvements in daily estimates are smaller and inconsistent in time. We decided to use the 633 
whole day shifting approach to avoid shifting the precipitation frequency distributions and 634 
increasing bias.  635 

To provide further confidence that the time shifting approach for precipitation was 636 
warranted, we performed a correlation analysis of the timing of Daymet results with and 637 
without time-shifting correction using the radar-based Stage IV Quantitative Precipitation 638 
Estimate (ST4; 27). The ST4 data merges raw radar-based precipitation estimates with 639 
automatic hourly rainfall gauge observations and is further quality controlled by several 640 
National Oceanic and Atmospheric Administration (NOAA) River Forecasting Centers (RFCs). 641 
ST4 is available at hourly time step in 4-km horizontal resolution since 2002. An evaluation 642 
performed by 28 suggests that ST4 has the highest correlation coefficient with gauge 643 
observations among various gridded precipitation products. By aggregating 24-hour ST4 at 644 
different starting time, we try to identify when a highest correlation coefficient between 645 
Daymet and ST4 can be reached and use it to indirectly assess the actual timing of daily 646 
precipitation estimates from the Daymet algorithm. This analysis goes beyond the cross-647 
validation approach, by using the full gridded Daymet outputs as opposed to only the 648 
Daymet predictions at individual surface observing stations. We used the Daymet V3 outputs 649 
5 to assess timing of precipitation without TOO bias correction, and the Daymet V4 outputs 650 
(using whole-day shifting approach) to assess timing of precipitation with TOO bias 651 
correction. 652 

At each Daymet grid point, the nearest ST4 grid point was first identified. The 24-hour ST4 653 
was then aggregated from t = -23, -22, …, 23, in which t represents the starting hour before 654 
(positive) or after (negative) midnight LST. For instance, t = 17 indicates that the 24-hour ST4 655 
is calculated from 7AM previous day to 7AM current day, which is the reporting time for 656 
most GHCND stations. To avoid further complicating the problem, daylight saving adjustment 657 
is not considered. 658 

Fig. 3(a) shows the correlation coefficient between Daymet V3 and 24-hour ST4 aggregated 659 
from midnight to midnight LST. Clearly, since most of the daily stations do not report from 660 
midnight to midnight, the correlation coefficient is weak and less than 0.5 for most grid 661 
points. By testing different ST4 aggregation timing, Fig. 3(c) shows the maximum correlation 662 
coefficient between Daymet V3 and 24-hour ST4, and Fig. 3(e) shows the corresponding 663 
timing. In terms of the maximum correlation, it is greater than 0.9 in the majority of eastern 664 
US. The correlation declines in the western US where we have serious radar blockage issues. 665 
It also shows low correlation in Mexico and above the Great Lakes where we may not have 666 



 

17 

 

high quality gauges records for both Daymet and ST4. Fig. 3(e) suggests that the timing of 667 
Daymet V3 daily precipitation is mostly earlier than midnight and peak at t = 17, which is 668 
consistent with the timing of most GHCND stations. 669 

By repeating the analysis using Daymet V4, the corresponding results are showed in Fig. 3(b), 670 
3(d), and 3(f). In terms of maximum correlation, the results of Fig. 3(d) is similar to Fig. 3(c), 671 
with some slight improvement. Except for some parts of western US and Mexico, the timing 672 
of Daymet V4 daily precipitation is later than midnight and peak at t = 7. Since the daily 673 
timing is now pushed closer to midnight, stronger correlation is showed in Fig. 3(b), as 674 
expected. This analysis corroborates that the whole-day shifting approach has improved the 675 
timing bias, moving the Daymet results closer to a local midnight-to-midnight measurement, 676 
albeit shifting from a large early bias to a smaller late bias. The fact that this compromise is 677 
an overall improvement in timing is supported by the generally higher correlations shown for 678 
V4 than for V3, comparing Fig. 3(b) with Fig. 3(a). 679 

 680 

Figure 3. Analysis of Daymet precipitation timing by 2010–2019 hourly ST4 data. Panel (a) shows the correlation 681 
coefficient between Daymet V3 and 24-hour ST4 aggregated from local midnight to midnight. By testing different 682 
ST4 aggregation timing, panel (c) shows the maximum correlation coefficient between Daymet V3 and 24-hour 683 
ST4, and panel (e) shows the corresponding timing. Panels (b), (d), and (f) are similar to (a), (c), and (e) but 684 
calculated by Daymet V4. 685 
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II. Assessment of SNOTEL temperature sensor correction 686 

We used the Daymet cross-validation framework to quantify the relationship between 687 
observed temperatures before and after sensor replacement in the SNOTEL network of high-688 
elevation stations, and to estimate any empirical relationship between those temperature 689 
differences and observed temperature. We examined the difference in cross-validation 690 
prediction bias at each SNOTEL station before and after sensor replacement, as a function of 691 
observed temperature. The theory of this analysis depends on the existence of a large 692 
number of stations outside the SNOTEL network (mainly the US COOP stations) but within 693 
the same geographic region. We assume that the instrumentation within the non-SNOTEL 694 
networks is consistent over time, and that the cross-validation estimates at each SNOTEL 695 
station location will be significantly influenced by the presence of the non-SNOTEL network 696 
stations. Comparing estimates so derived with the SNOTEL station observations (as per the 697 
cross-validation protocol) will result in a characteristic pattern of bias at the SNOTEL 698 
measurement site. If the change in SNOTEL instrumentation causes a systematic shift in the 699 
observed temperature at the station, then this pattern of cross-validation bias should shift 700 
accordingly when examined before and after the sensor change. Furthermore, since one 701 
sensor is used for measurement of minimum and maximum temperature at the SNOTEL 702 
station, we expect that the differences in cross-validation bias patterns, such as exist, should 703 
overlap for the part of the temperature range with significant overlap in the measurement 704 
temperatures. 705 

We aggregated cross-validation results from all SNOTEL stations and binned them by 706 
measurement temperature and found that there are distinguishable patterns of cross-707 
validation bias for both Tmax and Tmin observations. Examining the differences in bias 708 
before and after sensor replacement at each station, we found a coherent and nearly linear 709 
pattern of bias differences in both Tmax and Tmin cross-validation results over the range of 710 
observed temperature from about -5 °C to 30 °C (Figure 4). The same linear pattern 711 
extended down to observed temperatures of -15 °C for Tmax, but not for Tmin (Figure 4). 712 
Based on these results we estimated bias corrections using one piece-wise regression fit for 713 
observed values from 30 °C down to a break-point at -5.3 °C, and a second fit for values from 714 
-5.3 °C to -20 °C (Figure 4). For values above 30 °C and below -20 °C, we held the bias 715 
correction constant as given by the relevant piece-wise fit at those values.  716 

We used a synthetic analysis of station data from a cold region outside the SNOTEL domain 717 
to assess whether our approach can provide a bias correction for a known (synthetic) 718 
imposed bias in a subset of the station data. We found that the cross-validation bias method 719 
gave a reliable estimate of the known synthetic bias pattern (results not shown). 720 
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 721 

Figure 4. Piece-wise linear regressions based on combined Tmax and Tmin bias differences. Each symbol 722 
represents the difference between daily cross-validation bias values after vs. before sensor replacement, for a 723 
single variable (Tmax or Tmin) and for a binned sample of observed temperatures taken across all SNOTEL 724 
stations. Observed temperature bins are 0.5 °C wide. Solid lines show the piece-wise regression fits, and dashed 725 
line shows the piece-wise break-point at -5.3 °C. 726 

III. Summary of Daymet V4 cross-validation results 727 

Complete cross-validation results for Tmax, Tmin, and Prcp are provided with the Daymet V4 728 
data release, for every input weather station and every estimation day over the 40-year 729 
period. Users are encouraged to consult the cross-validation data to assess suitability of the 730 
results for the region, period, and variables of interest for different data applications. Here 731 
we provide high-level summaries of some of the key cross-validation metrics, focusing on 732 
daily MAE for Temperature and precipitation. Many other metrics can be calculated from the 733 
raw cross-validation results provided in the dataset, according to user needs. 734 

The mean daily MAE of Tmin averaged over the 40-year period is about 1.78 °C, and does not 735 
show strong trends over time. This is very similar to the same metric for the Daymet V3 736 
database, which is expected since Tmin processing is unchanged from V3 except for 737 
differences in the input weather stations. The same daily MAE metric for Tmax is significantly 738 
improved compared to V3 (1.52 °C for V4 compared to 1.75 °C for V3), and shows greater 739 
improvement in recent years (Figure 5a). These results are consistent with improvements 740 
related to TOO bias correction for Tmax. 741 

 742 
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 743 

Figure 5. Annual timeseries of daily cross-validation mean absolute error (MAE), averaged over all station days for 744 
each year, comparing results for Daymet V4 and Daymet V3. a) MAE for estimation of daily maximum 745 
temperature. b) MAE for estimation of daily total precipitation. 746 

 747 

Mean daily MAE of Prcp is significantly lower in recent years compared to the early part of 748 
the record, consistent with the expansion of the CoCoRaHS network. V4 daily MAE of Prcp is 749 
similar to or slightly higher than V3 through about year 2000, after which V4 shows some 750 
improvement (lower MAE) compared to V3 (Figure 5b). This pattern is consistent with the 751 
TOO bias correction analysis presented above. 752 

Variation in station density, terrain, and large-scale atmospheric patterns all contribute to 753 
spatial heterogeneity in cross-validation statistics. Introduction of TOO bias correction 754 
reduces cross-validation error in regions where different TOO protocols occur in close 755 
proximity, such as across the US-Canada border (Figure 6a and b). Improvements in Prcp 756 
cross-validation error are more localized, and are most noticeable in the Great Lakes region 757 
and across parts of the eastern seaboard and southeastern US (Figure 6c and d). 758 
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 759 

Figure 6. Cross-validation results for all stations, showing daily mean absolute error (MAE) averaged over all days 760 
in a single year (2017) and mapped using a nearest-neighbor interpolation to objectively display the influence of 761 
varying station density and other factors on data accuracy. Results from the previous version of the Daymet 762 
dataset (V3) are shown alongside the latest (V4) results to highlight spatial patterns of improvement based on the 763 
new methods described here. a) Annual mean of daily MAE for Tmax, V3. b) Annual mean of daily MAE for Tmax, 764 
V4. c) Annual mean of daily MAE for Prcp, V3. d) Annual mean of daily MAE for Prcp, V4. 765 

 766 

To help evaluate the dataset for the presence of obvious spatial discontinuities or other 767 
similar anomalies we provide a sample of Daymet V4 daily data aggregated to annual 768 
climatologies and mapped for 2019, for Tmax, Tmin, Prcp, and the secondary output variable 769 
vapor pressure (Figure 7). These climatology include the separately generated subregions for 770 
Hawaii and Puerto Rico. The climatologies show both large and small-scale features, and 771 
visual inspection indicates that there are not obvious spurious patterns or discontinuities. 772 

One consequence of changes in the Daymet algorithm for V4 is that hard upper limits on 773 
daily precipitation amounts have been removed. This is important in resolving extreme 774 
events where more than 200 mm of precipitation might be observed in a day (200 mm/day 775 
being the V3 hard limit).  776 

 777 



 

22 

 

 778 

Figure 7. Annual Daymet V4 climatologies for 2019, for Tmax (upper left), Tmin (upper right), Prcp (lower left), and 779 
vapor pressure (lower right). 780 

Usage Notes 781 

The Daymet project website (https://daymet.ornl.gov) provides links to all of the methods 782 
for obtaining Daymet data through the ORNL DAAC. The data are available for direct 783 
download through the dataset landing pages pointed to by the dataset DOIs 784 
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32. The data are also available through 785 
different services, including: 786 

• Thematic Real-time Environmental Distributed Data Services (THREDDS) Data 787 
Server (TDS) at 788 
https://thredds.daac.ornl.gov/thredds/catalogs/ornldaac/Regional_and_Global_789 
Data/DAYMET_COLLECTIONS/DAYMET_COLLECTIONS.html provides the ability 790 
to obtain subsets of Daymet daily surface weather data, monthly climatology, 791 
and annual climatology data sets. Instructions for using the THREDDS netCDF 792 
subsetting web service can be found at 793 
https://daymet.ornl.gov/web_services.html.  794 

• The ORNL DAAC’s Spatial Data Access Tool (SDAT) at 795 
https://webmap.ornl.gov/ogc provides visualization and Open Geospatial 796 

https://daymet.ornl.gov/
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32
https://thredds.daac.ornl.gov/thredds/catalogs/ornldaac/Regional_and_Global_Data/DAYMET_COLLECTIONS/DAYMET_COLLECTIONS.html
https://thredds.daac.ornl.gov/thredds/catalogs/ornldaac/Regional_and_Global_Data/DAYMET_COLLECTIONS/DAYMET_COLLECTIONS.html
https://daymet.ornl.gov/web_services.html
https://webmap.ornl.gov/ogc
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Consortium (OGC)-compliant web services for the monthly and annual 797 
climatologies. 798 

• The Daymet Single Pixel Extraction tool at https://daymet.ornl.gov/single-pixel/ 799 
provides a graphical user interface and web services for extracting a time series 800 
of Daymet daily surface weather data at a specific location. 801 

• The Daymet Tile Selection Tool at https://daymet.ornl.gov/gridded/ provides a 802 
method for getting the daily surface weather data in gridded 2 degree by 2 803 
degree tiles. 804 

• The ORNL DAAC’s Fixed Sites Subsetting Tool at https://modis.ornl.gov/sites/ 805 
provides pre-computed time-series visualizations and data downloads (csv and 806 
JSON) for approximately 1400 sites in North America which are part of one or 807 
more ecological research networks. 808 

All Daymet data are publicly available, without restriction, according to the NASA Earth 809 
Observing System Data and Information System (EOSDIS) Data Use Policy at 810 
https://earthdata.nasa.gov/earth-observation-data/data-use-policy. A NASA Earthdata Login 811 
account is generally needed to download data, available through 812 
https://urs.earthdata.nasa.gov. Any person can get an Earthdata Login account through an 813 
automated process. 814 

Code Availability  815 

The source code implementing the core Daymet algorithms (Equations 2 through 17 and 816 
associated text) is available for examination by editors and reviewers of this manuscript 817 
upon request. Upon acceptance and publication, the core algorithm code will be made 818 
publicly available through a suitable archive.  819 
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